Symbolic Techniques for Domain Decomposition Methods
نویسندگان
چکیده
Some algorithmic aspects of systems of PDEs based simulations can be better clarified by means of symbolic computation techniques. This is very important since numerical simulations heavily rely on solving systems of PDEs. For the large-scale problems we deal with in today’s standard applications, it is necessary to rely on iterative Krylov methods that are scalable (i.e., weakly dependent on the number of degrees on freedom and number of subdomains) and have limited memory requirements. They are preconditioned by domain decomposition methods, incomplete factorizations and multigrid preconditioners. These techniques are well understood and efficient for scalar symmetric equations (e.g., Laplacian, biLaplacian) and to some extent for non-symmetric equations (e.g., convection-diffusion). But they have poor performances and lack robustness when used for symmetric systems of PDEs, and even more so for non-symmetric complex systems (fluid mechanics, porous media. . . ). As a general rule, the study of iterative solvers for systems of PDEs as opposed to scalar PDEs is an underdeveloped subject. We aim at building new robust and efficient solvers, such as domain decomposition methods and preconditioners for some linear and well-known systems of PDEs. In particular, we shall concentrate on Neumann-Neumann and FETI type algorithms which are very popular for scalar symmetric positive definite second order problems (see, for instance, [11, 9]), and to some extent to different other problems, like the advection-diffusion equations [1],
منابع مشابه
Symbolic methods for developing new domain decomposition algorithms
The purpose of this work is to show how algebraic and symbolic techniques such as Smith normal forms and Gröbner basis techniques can be used to develop new Schwarz-like algorithms and preconditioners for linear systems of partial differential equations. Key-words: Systems of partial differential equations, domain decomposition methods, symbolic computation, systems theory, algebraic analysis, ...
متن کاملSymbolic preconditioning techniques for linear systems of partial differential equations
Some algorithmic aspects of systems of PDEs based simulations can be better clarified by means of symbolic computation techniques. This is very important since numerical simulations heavily rely on solving systems of PDEs. For the large-scale problems we deal with in today’s standard applications, it is necessary to rely on iterative Krylov methods that are scalable (i.e., weakly dependent on t...
متن کاملUpdating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کاملSymbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملSolving Linear Systems with Sparse Matrices on Hypercubes
We investigate parallel Gauss elimination for sparse matrices, especially those arising from the discretization of PDEs. We propose an approach which combines minimum degree ordering, nested dissection, domain decomposition and multifront techniques. Neither symbolic factorization nor explicit representation of elimination trees are needed. An effective and economic dynamic data structure is pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013